Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(4): 2542-2549, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36599042

RESUMO

Infrared spectroscopic imaging is widely used for the visualization of biomolecule structures, and techniques such as optical photothermal infrared (OPTIR) microspectroscopy can achieve <500 nm spatial resolution. However, these approaches lack specificity for particular cell types and cell components and thus cannot be used as a stand-alone technique to assess their properties. Here, we have developed a novel tool, fluorescently guided optical photothermal infrared microspectroscopy, that simultaneously exploits epifluorescence imaging and OPTIR to perform fluorescently guided IR spectroscopic analysis. This novel approach exceeds the diffraction limit of infrared microscopy and allows structural analysis of specific proteins directly in tissue and single cells. Experiments described herein used epifluorescence to rapidly locate amyloid proteins in tissues or neuronal cultures, thus guiding OPTIR measurements to assess amyloid structures at the subcellular level. We believe that this new approach will be a valuable addition to infrared spectroscopy providing cellular specificity of measurements in complex systems for studies of structurally altered protein aggregates.


Assuntos
Proteínas Amiloidogênicas , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Micros Today ; 28(3): 26-36, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33850481

RESUMO

Optical Photothermal Infrared (O-PTIR) spectroscopy is a new technique for measuring submicron spatial resolution IR spectra with little or no sample preparation. This speeds up analysis times benefiting high-volume manufacturers through gaining insight into process contamination that occurs during development and on production lines. The ability to rapidly obtain far-field non-contact IR spectra at high spatial resolution facilitates the chemical identification of small organic contaminants that are not possible to measure with conventional Fourier transform infrared (FT-IR) microspectroscopy. The unique pump-probe system architecture also facilitates submicron simultaneous IR + Raman microscopy from the same spot with the same spatial resolution. With these unique capabilities, O-PTIR is finding utilization in the high-volume and high-value industries of high-tech componentry (memory storage, electronics, displays, etc.).

3.
Analyst ; 143(24): 5940-5949, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30345433

RESUMO

AFM-IR is a photothermal technique that combines AFM and infrared (IR) spectroscopy to unambiguously identify the chemical composition of a sample with tens of nanometer spatial resolution. So far, it has been successfully used in contact mode in a variety of applications. However, the contact mode is unsuitable for soft or loosely adhesive samples such as polymeric nanoparticles (NPs) of less than 200 nm of wide interest for biomedical applications. We describe here the theoretical basis of the innovative tapping AFMIR mode that can address novel challenges in imaging and chemical mapping. The new method enables gaining information not only on NP morphology and composition, but also reveals drug location and core-shell structures. Whereas up to now the locations of NP components could only be hypothesized, tapping AFM-IR allows accurately visualizing both the location of the NPs' shells and that of the incorporated drug, pipemidic acid. The preferential accumulation of the drug in the NPs' top layers was proved, despite its low concentration (<1 wt%). These studies pave the way towards the use of tapping AFM-IR as a powerful tool to control the quality of NP formulations based on individual NP detection and component quantification.


Assuntos
Microscopia de Força Atômica/métodos , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espectrofotometria Infravermelho/métodos , Ácido Pipemídico/química , Álcool de Polivinil/química , Tensoativos/química
4.
Beilstein J Nanotechnol ; 8: 863-871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503397

RESUMO

The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR) and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM) to investigate the fabrication of 20-500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10-20 nm. While the observed structure-property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

5.
Chem Rev ; 117(7): 5146-5173, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958707

RESUMO

Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

6.
Nanotechnology ; 28(4): 044003, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28000611

RESUMO

This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 µm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

7.
Nanotechnology ; 25(39): 395501, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25189800

RESUMO

This paper reports the development of microcantilevers capable of self-heating and Lorentz-force actuation, and demonstrates applications to thermal topography imaging. Electrical current passing through a U-shaped cantilever in the presence of a magnetic field induces a Lorentz force on the cantilever free end, resulting in cantilever actuation. This same current flowing through a resistive heater induces a controllable temperature increase. We present cantilevers designed for large actuation forces for a given cantilever temperature increase. We analyze the designs of two new cantilevers, along with a legacy cantilever design. The cantilevers are designed to have a spring constant of about 1.5 N m(-1), a resonant frequency near 100 kHz, and self-heating capability with temperature controllable over the range 25-600 °C. Compared to previous reports on self-heating cantilevers, the Lorentz-thermal cantilevers generate up to seven times as much Lorentz force and two times as much oscillation amplitude. When used for thermal topography imaging, the Lorentz-thermal cantilevers can measure topography with a vertical resolution of 0.2 nm.

8.
J Phys Chem Lett ; 5(4): 654-8, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26270832

RESUMO

An atomic force microscope coupled with a tunable infrared laser source (AFM-IR) was used to measure the size and map the distribution of oil inclusions inside of microorganism without staining or other special sample preparation. The microorganism under study is Streptomyces, a soil bacterium that possesses the capability, under some specific nutritional conditions, to store its carbon source into TriAcylGlycerols, a potential direct source of biodiesel.

9.
Appl Spectrosc ; 66(12): 1365-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231899

RESUMO

Polymer and life science applications of a technique that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy to obtain nanoscale IR spectra and images are reviewed. The AFM-IR spectra generated from this technique contain the same information with respect to molecular structure as conventional IR spectroscopy measurements, allowing significant leverage of existing expertise in IR spectroscopy. The AFM-IR technique can be used to acquire IR absorption spectra and absorption images with spatial resolution on the 50 to 100 nm scale, versus the scale of many micrometers or more for conventional IR spectroscopy. In the life sciences, experiments have demonstrated the capacity to perform chemical spectroscopy at the sub-cellular level. Specifically, the AFM-IR technique provides a label-free method for mapping IR-absorbing species in biological materials. On the polymer side, AFM-IR was used to map the IR absorption properties of polymer blends, multilayer films, thin films for active devices such as organic photovoltaics, microdomains in a semicrystalline polyhydroxyalkanoate copolymer, as well as model pharmaceutical blend systems. The ability to obtain spatially resolved IR spectra as well as high-resolution chemical images collected at specific IR wavenumbers was demonstrated. Complementary measurements mapping variations in sample stiffness were also obtained by tracking changes in the cantilever contact resonance frequency. Finally, it was shown that by taking advantage of the ability to arbitrarily control the polarization direction of the IR excitation laser, it is possible to obtain important information regarding molecular orientation in electrospun nanofibers.

10.
ACS Nano ; 6(9): 8015-21, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22928657

RESUMO

There is a significant need for chemical identification and chemical imaging of nanofabricated structures and devices, especially for multiple materials integrated at the nanometer scale. Here we present nanofabrication, chemical identification, and nanometer-scale chemical imaging of polymer nanostructures with better than 100 nm spatial resolution. Polymer nanostructures of polyethylene, polystyrene, and poly(3-dodecylthiophene-2,5-diyl) were fabricated by tip-based nanofabrication. Nanometer-scale infrared measurements using atomic force microscopy infrared spectroscopy (AFM-IR) obtained quantitative chemical spectra of these nanostructures. We show chemical imaging of intersecting patterns of nanometer-scale polymer lines of different chemical compositions. The results indicate that for closely packed heterogeneous nanostructures, the spatial resolution of AFM-IR is not limited by nanometer-scale thermal diffusion, but is instead limited by the cantilever sensitivity and the signal-to-noise ratio of the AFM-IR system.


Assuntos
Teste de Materiais/métodos , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Espectrofotometria Infravermelho/métodos , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Nanotechnology ; 23(5): 055709, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22237044

RESUMO

We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

12.
Appl Spectrosc ; 65(10): 1145-50, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21986074

RESUMO

Atomic force microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument (AFM-IR) capable of producing sub-micrometer spatial resolution IR spectra and absorption images. This new capability enables the spectroscopic characterization of microdomain-forming polymers at levels not previously possible. Films of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) were solution cast on ZnSe prisms, followed by melting and annealing to generate crystalline microdomains of different sizes. A tunable IR laser generating pulses of the order of 10 ns was used for excitation of the sample films. Short duration thermomechanical waves, due to infrared absorption and resulting thermal expansion, were studied by monitoring the resulting excitation of the contact resonance modes of the AFM cantilever. Dramatic differences in the room-temperature IR spectra are observed in the 1200-1300 cm(-1) range as a function of position on a spatial scale of less than one micrometer. This spectral region is particularly sensitive to the polymer backbone conformation. Such dramatic spectral differences have also been observed previously in bulk IR measurements, but only by comparing room-temperature spectra with ones collected at higher temperatures. Less dramatic, but significant, AFM-IR spectral differences are observed in the carbonyl stretching region around 1720 cm(-1) as a function of location on the sample. Two overlapping, but relatively sharp, carbonyl bands are observed near 1720 cm(-1) in more crystalline regions of the polymer, while a broader carbonyl stretching band appears centered at 1740 cm(-1) in the more amorphous regions. Using this spectral region, it is possible to monitor the development of polymer crystalline structures at varying distances from a nucleation site, where the site was generated by bringing a heated AFM tip close to a specific location to locally anneal the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...